AES 59th Conference on Sound Reinforcement Engineering

An electro-acoustic conundrum – Improving the listening experience at the Park Avenue Armory

by:

Anthony Nittoli, Akustiks Steve Barbar, LARES Associates \ E-coustic Systems

Die Soldaten - Opera

Interactive Exhibitions

Park Avenue Armory

- There are two important factors that influence the design of electro-acoustic systems used to alter the perceived acoustical conditions in a space:
 - The physics of the venue
 - Size, surface treatments, geometry
 - Programming
 - Who will do what (where, how, etc.)

Examples of Large Installations

Examples of Large Installations

- In each of the examples we can readily identify the nature of the sound source(s).
- We know something about the location of the sound source(s).
- We know something about the expectations for acoustical delivery.
- We can design infrastructure to support a variety of programs without the need to make substantial physical changes to the system.

Examples of Large Installations

Park Avenue Armory

Park Avenue Armory

Typical System Installation

Park Avenue Armory

- All of the infrastructure in the Armory is moveable and configured to meet the demands of a given performance.
- Much more complex than a touring event.
 - Involves multiple trades and crews that must be coordinated.
- The equipment may need to move to different locations in the space or be divided and placed in multiple locations.
- The Armory decided that amplifiers and cable for each production would be rented.
- Thus, the system design and integration is far from "typical"

Important design considerations:

- Large matrix mixing capacity to accommodate "anything audio".
 - Multiple zones of sound reinforcement
 - Multiple independent inputs for surround sound, 2D, and 3D sound, and live tracking.
 - Multiple acoustic processing engines with independent or summed I/O.

System Overview:

- 512 channel point-to-point matrix with 320 hardware I/O.
 - 64 Digital Input channels for Sound Reinforcement (AES-EBU or MADI).
 - 16 Analog Input channels for Sound Reinforcement.
 - 16 Microphone Inputs for Acoustic Enhancement.
 - Up to 64 Input channels from Independent Acoustics engines.

Basic Signal Flow: E-Architecture, E-Performance

Microphone signals converted to MADI and Sent to Matrix Processor

Signals from virtual Acoustics Machines are assigned to Matrix Processor MADI Outputs

MADI signals are sent to AO-16 or AO-32 for Analog Conversion

AT-32's connect to amplifier outputs that feed loudspeakers.

System Layout "Machine"

Important Loudspeaker Considerations:

- Sufficient number of loudspeakers to meet design objectives for electronic architecture.
 - Typical two-way with HF pattern control will not work.
 - Must have broadband power uniformity.
 - Must generate sufficient power.
- Sufficient number of loudspeakers to meet design objectives for Direct/Early reflected energy.
 - Broadband pattern control extremely important.
 - SIZE of the loudspeaker enclosure is important.

Large Format Direct Loudspeakers

Comparison to typical 2-way

Enhancement Loudspeakers

Machine – Plan View

Machine Primary SR

Machine Overhead SR

Line Array Microphones

Machine

Passenger

Passenger

Passenger Reinforcement

Passenger Delayed SR

Passenger Delayed SR

Passenger

Helene Gramaud

Massive Engineering Undertaking

- The artists "vision" was to build a pool of water on the entire floor of the Armory that would create a mirror image of the space above.
- Arup Engineering were hired to develop the means to make it work...
 - Structural engineering for weight loads
 - Waterproof floor construction
 - Materials that would not be affected by or affect water
 - Creating a completely level surface on a floor of this size
 - Silent water pumps and plumbing
 - Temporary water storage and filtration
 - Humidity levels that would not affect the Steinway Pianos

False Floor – Pool

giant, glassy lake. Workers laid 7,000 concrete blocks on the floor to create a level base for the pool.

Helene Gramaud

Conclusions

- We have demonstrated to both the Armory as well as Lincoln Center that this approach can produce very successful results.
- We have also demonstrated that LARES can be successfully integrated with body mic techniques and produce a reasonable semblance of a "natural" environment.
- You cannot ignore the natural acoustics of the space, and must plan to provide temporary absorption to reduce RT or control problematic late reflections.

Conclusions

- Each "performance" is a unique design that requires careful integration of acoustical treatments as well as electro-acoustic audio components.
- The nature of the building makes any production labor intensive.
- When enhancement is required, the need for uniform loudspeaker density has proven to be cost prohibitive for some productions.
- The unique nature of the Drill Hall allows for very unique programming. Such programs are typically labor intensive in any venue.

a ku stiks

Questions & Discussion